Assurance and Sustainability

There are two ways of constructing a software design. One way is to make it so
simple that there are obviously no deficiencies. And the other way is to make it so
complicated that there are no obvious deficiencies.

- TONY HOARE

Security engineers are the litigation lawyers of tech. We only get paid when something
is wrong and we can always find something wrong.

- DAVE WESTON

To improve is to change; to be perfect is to change often.
- WINSTON CHURCHILL

28.1 Introduction

I've covered a lot of material in this book, some of it quite tricky. But I've left
the hardest parts to the last. First, there’s the question of assurance — whether
the system will work, and how you're sure of this. Next, there’s its cousin
compliance — how you satisfy other people about this. Finally, there’s sustain-
ability —how long it will keep on working. Many practical questions are linked
to these. How do you decide to ship the product? How do you sell the security
and safety case to your insurers? How long are you going to have to maintain
it, and at what cost?

What's new in 2020 is sustainability. In the 2008 edition, I called this chapter
‘Evaluation and Assurance’, and ended up by remarking that sound processes
for vulnerability disclosure and product update were beginning to be as
important as pre-market testing. The emphasis back then was on testing and
evaluation schemes like the Common Criteria. That world is now moribund:
the idea that a device should be secure because someone spent $100,000
getting an evaluation lab to test it five years ago would strike most people
nowadays as quaint. Assurance is no longer static.

1015

1016 Chapter 28 = Assurance and Sustainability

Ten years ago, we knew how to make two types of secure system. We had
things like phones and laptops, which contained software and were online, but
were sort-of secure because the software got patched once a month. And we
had things like cars and medical devices, which contained software but were
not online; you tested them to death before they were put on sale, and then
hoped for the best, as patching meant a physical recall. Now we’ve started to
put cars and medical devices online, so they have to be patched online too.

The number of vulnerabilities reported in common platforms is so great that
we have to automate the process. As we described in the previous chapter, the
software development lifecycle has become DevOps and then DevSecOps; the
online components of systems are maintained using continuous integration,
while components in the field need regular upgrades.

With a new product, assurance can be measured roughly by whether capable
motivated people have beat up on the system enough. But how do you define
‘enough’? And how do you define the ‘system’? How do you deal with people
who protect the wrong thing? And how do you deal with usability? Too many
systems are designed for use by alert experienced professionals, but are too
tricky for ordinary folk or are intolerant of error. Once they get fielded, the
injury claims or fraud disputes start to roll in.

In the security engineering of a decade ago, we often talked of assurance
in terms of evaluation, which was about how you assembled the evidence to
convince your boss, your clients, and (if need be) a jury, that it did indeed work
(or that it did work at some particular time in the past). As we’ve seen again
and again, things often fail because one principal carries the cost of protection
while another carries the risk of failure. Third-party evaluation schemes such
as the Common Criteria were supposed to make these risks more transparent
and mitigate them, but ended up acting as a liability shield — particularly in the
public sector and in regulated industries such as banking. Systems protecting
classified information were subjected to extensive compliance requirements
and had to use evaluated products at the attack surface; much the same
held, with different details, for payment systems. Evaluation was driven by
compliance.

Compliance is still the main driver of security design and investment, but
it places much less emphasis on requiring evaluated products at specific trust
boundaries. The details vary from one industry to another. When we look at
medical systems, cars or aircraft we find regulatory regimes driven by safety
that are starting to incorporate security. General business systems have policy
set by the Big Four audit firms, and payment systems by PCI. We have touched
on some of their specific requirements in previous chapters; there are some
broader issues and principles that we’ll try to pull together here.

Right at the start of this book, in Figure 1.1, I presented a framework for secu-
rity engineering based on incentives, policy, mechanism and assurance.

28.1 Introduction 1017

= [ncentives are critical, as we’ve seen time and again. They often fall out-
side a formal assurance process, but are the most critical part of the
environment within which the security policy has to be defined.

= Policy is often neglected, as we’ve seen: people often end up protecting
the wrong things, or protecting the right things in the wrong way. We
spent much of Part 2 of the book exploring security policies for different
applications.

m Mechanisms may be independent of policy, but can interact with
it by making some policy options easier to implement.

= Assurance is our estimate of the likelihood that a system will not fail in a
particular way. This estimate can be based on a number of factors, such
as the process used to develop and maintain it; the people who develop
and maintain it; and specific technical assessments, such as the statistics
of failure rates, bug reports, breach reports and insurance claims. It was
traditionally about evaluation — whether, given the agreed security policy
and strength of mechanisms, a product had been implemented correctly.
Had the bugs been found and fixed? Could you quantify the mean time
to failure? Nowadays it’s increasingly about the vendor’s future commit-
ment. For how long, and how diligently, will the system be patched?

By the second edition of this book in 2008, I noted that the big missing fac-
tor was usability. Most system failures have a significant human component.
Usability is a cross-cutting issue in the above framework: if done properly,
it has a subtle effect on policy, a large effect on choice of mechanisms, and
a huge effect on how systems are tested. It cuts across individual products:
a common reason for accidents is that different products have different user
interfaces, an issue to which we’ll return later. However, designers often saw
assurance simply as an absence of obvious bugs, and designed technical pro-
tection mechanisms without stopping to consider human frailty. (There are
some exceptions: bookkeeping systems are designed to cope with both error
and fraud.)

Usability is not purely a matter for end-users, but for developers too. Many
vulnerabilities arise because security mechanisms are too hard to understand
or too fiddly to use. Developers often didn’t use operating-system access con-
trols, but just ran their code with administrator privilege instead; when mobile
phones didn’t allow this, they kept demanding too many permissions for their
apps; and cryptography often uses ECB mode as it’s the default with many
crypto libraries.

Customers and vendors want different things at multiple points in the value
chain. Regulation doesn’t always help, because governments have multiple
agendas of their own, often in conflict: intelligence agencies, safety regulators

1018 Chapter 28 = Assurance and Sustainability

and competition authorities pull in different directions. It’s in this treacherous
landscape that the assurance game is played.

Assurance is thus a political and economic process. It is also a dynamic pro-
cess, just like the development of code or of documents. Just as you have bugs
in your code, and in your specification, you will also have things wrong with
your security and safety policies, leading to omissions and errors in your test
suite. So assurance is steadily turning from something done as a one-off project
to another aspect of continuous evolution.

With that warning, it’s helpful to start with the classic problem of evaluating
a static product that is built in a single project.

28.2 Evaluation

Product evaluation tackles the problem of the lemons market we discussed in
section 8.3.3: when customers can’t measure quality, bad products drive out
good ones. Security has been a lemons market for generations. An 1853 book
on locksmithing justified disclosing the ‘secrets’ of the trade on the grounds
that the burglars knew them already; it was just the locksmiths’ customers who
were ignorant [1899]. Modern consumer-grade products, from anti-virus soft-
ware to mobile phone apps, are way beyond the ability of most consumers to
assess technically. If they are just going to rely on the brand name, the vendor
may as well buy ads rather than hiring security engineers. As for professional
products, the tech majors may employ enough PhDs to do an assessment, but
banks don’t — not even money-centre banks!. In earlier chapters, we discussed
a number of examples of static security standards against which various prod-
ucts get evaluated and certified. Banks and governments are among the keenest
purchasers of certified security products.

That may have been where computer security got started fifty years ago,
but as computers end up everywhere, we have to look at other industries too.
Dozens of industries have their own safety standards, with which security
mechanisms are increasingly intertwined. We already talked about electricity
transmission and distribution in section 23.8.1. Safety standards for software
in road vehicles have developed over decades; we talked about trucks
in 14.3.3. Now that both trucks and cars have multiple systems for assisted
driving and are connected to the Internet, they have critical security as well
as safety requirements. The same is happening for medical equipment and
much else.

'In my late 20s and early 30s I worked in banking, and when I went to an interbank security
standards committee there were only about four of us in the room who knew what we were
talking about — of whom one was from IBM. Fintech has become an order of magnitude more
complex since then.

28.2 Evaluation 1019

I'll explore this via a number of case studies. Two important questions are
whether the evaluation is conducted by the relying party or by a third party,
and whether the standards are static or dynamic.

28.2.1 Alarms and locks

The US insurance industry set up a joint testing lab in 1894, alarmed at the fire
risks from electric lightbulbs; it was incorporated in 1901 as Underwriters” Lab-
oratories, a nonprofit that develops fire safety and other standards, and started
approving security products in 1913 [1920]. Other countries have similar bod-
ies. An evaluator spends a fixed budget of effort looking for flaws and writes a
report, after which the lab either approves a device, turns it down or demands
some changes.

As the insurance industry bears much of the cost of fires and burglaries,
incentives are somewhat aligned, although in practice these labs get much of
their income from testing fees. One risk is inertia: the standards may not keep
up with progress. In the case of high-security locks, a lab in 2000 might have
demanded ten minutes’ resistance to picking and say nothing about bumping.
We described in section 13.2.4 how bumping tools had improved enough to
be a major threat by 2010, and picks have got better too. We also described in
section 13.2.3 how bank vaults certified to resist attack for ten minutes can be
defeated in much less by a modern angle grinder or a burning bar. Insurance
labs in some countries, such as Germany, have been prepared to withdraw cer-
tifications as attacks got better; in the USA, they appear reluctant to, perhaps
for fear of being sued. The willingness of an industry to tolerate changing stan-
dards may depend on its structure: a mature industry with a handful of large
players can drag its feet a lot more than a growing competitive one.

28.2.2 Safety evaluation regimes

Safety standards tend to emerge one industry at a time in response to major
accidents or scandals. The safety of drugs and medical devices is regulated
in the USA by the FDA, set up in 1906 by President Theodore Roosevelt after
journalists exposed abuses in the patent medicine industry. It turned out that
the top-selling medicine in America was just a dilute solution of sulphuric acid
and turpentine — really cheap to manufacture, yet tasting nasty enough that
people could believe it was good for them [2052]. As for air safety, the first
step was in 1931, when America’s top football coach Knute Rockne died in a
plane crash caused by structural failure, causing a public outcry that led to the
establishment of the National Transportation Safety Board. The FAA was set
up later by President Eisenhower after a 1956 crash between two airliners over
the Grand Canyon killed all 128 people aboard the two planes [666]. As for the

1020 Chapter 28 = Assurance and Sustainability

car industry, it managed to disclaim liability for safety for decades. Vendors
competed to decorate cars with chromium rather than fit them with seat belts,
until Ralph Nader’s book “Unsafe at Any Speed’ spurred Congress to set up
National Highway Traffic Safety Administration (NHTSA) in 1970; its power
and influence grew with successive safety scandals.

Europe harmonised a patchwork of national laws into the Product Liability
Directive in 1985, adding further regulations and safety agencies by industry
sector. Since then, the European Union has developed into the world’s lead
safety regulator, with its agencies setting safety standards in industries from
aviation through railway signals to toys [1150]. With cars, for example, Europe
generally requires safety testing by independent labs?, while America doesn’t;
but most US vendors have their US models tested independently too, as Europe
created the ‘industry norm’ by which US courts assess tort cases when things
go wrong. In this sense, Europe has become a ‘regulatory superpower’.

The EU’s overall safety strategy is to evolve a set of standards by negotia-
tion with industry working groups and lobbyists and update them every seven
to ten years. Many products that cause serious harm, such as cars, have to
get explicit approval, typically following testing in an independent laboratory.
Less dangerous goods such as toys require self-certification: the vendor places
a ‘CE’ mark on the product to assert that it complies with all relevant standards.
This removes some of the excuses that vendors might use when non-compliant
products cause accidents; it’s also used for a wide range of components from
car brakes to industrial pressure valves.

28.2.3 Medical device safety

Safety regulation is a complex ecosystem, imperfect in many ways. For
example, there has long been controversy in both America and Europe over
medical device safety. This came to prominence in the 1980s when bugs in
the Therac 25 medical accelerator caused the death of three patients and
injured three more. The cause was a software bug that surfaced as a usability
issue: if the operator edited the machine’s parameters too quickly, they could
get the machine into a dangerous state where it delivered far too much radia-
tion to the patient. The case study is set reading for my software engineering
students even today [1151].

The most lethal medical devices nowadays are probably infusion pumps,
used to administer intravenous drugs and other fluids to patients in hospi-
tal. Many of the fatal accidents are usability failures. Just look at Figure 28.1:
each of these claims to be a ‘BodyGuard 545’ yet to increase the dose on the

ZEurope delegates type approval to Member States, most of which have a Type Approval Author-
ity which delegates testing to a specialist lab. In Germany, that's TUV. Some smaller countries
have a TAA that allows the manufacturer to do its own testing, with a TAA inspector present.

28.2 Evaluation 1021

Figure 28.1: Two infusion pumps that are apparently of the same model (photo courtesy of Harold
Thimbleby)

machine on the left, you press ‘2" while on the right you press ‘5’. An emergency
room might have equipment from half-a-dozen different vendors, all with dif-
ferent user interfaces. Doctors and nurses occasionally press the wrong button,
the wrong dose gets administered, or the dose for an eight-hour transfusion is
given all in one bolus — and patients die. Infusion pumps kill about as many
people as cars do, with the body count being in the low thousands in the UK
and the low tens of thousands in the USA [1881].

Surely this could be fixed with standards? Well, there are standards. For
example, ‘litres” is supposed to be marked with a capital ‘L’ so it’s not mistaken
for a ‘1, but you can see on the right-hand image that although the ‘OL/h’
complies with this, the ‘500ml” does not. So why is the standard not enforced?
Well, the FDA budget of engineering effort is about half a day per device,
and vendors don’t give the engineers actual devices to play with. It’s just a
paperwork review®. In addition, usability falls outside the FDA’s scope. This
is, I hear, a result of lobbying by the industry to ‘cut red tape’. The fact that
two different devices are marketed as the same product is a common strategy
to minimise compliance costs.

There has recently been international guidance for usability engineering of
medical devices in the form of ISO/IEC 62366-2, which took effect in 2018.
This is a significant advance that covers a lot of ground, but usability is a huge
tield. The new standard is very basic, and explains at length that manufacturers
should not just list hazards in a legal warning leaflet, or even highlight them
with notices on the equipment — they should actually try to mitigate them, and
in the process understand how their equipment is likely to be used and abused.
It describes a number of assessment techniques the engineer could use, but “in-
sufficient experience with the type of medical device” is just one bullet point
on its list of factors that might contribute to use errors. Manufacturers will find

3By way of comparison, when colleagues and I helped to evaluate a burglar alarm designed for
low-consequence risks such as small shops and houses, our budget was two person-weeks.

1022 Chapter 28 = Assurance and Sustainability

all this expensive, and will no doubt talk to their lawyers about how much
really has to be done. Safety in number entry alone is a complex field [1882];
every vendor should probably train an expert in it, and in dozens of other tech-
niques too, but many will do as little as they think they can get away with. In
the end, a usability assessment will now be in the trolleyload of paperwork the
manufacturer presents to regulators, at least outside the USA. But it’s unclear
whether the confusion arising when nurses also use the different interfaces of
competitors” equipment will be taken as seriously as it should be.

This is all teaching us that pre-market testing isn’t enough for medical device
safety — you need diligent post-market surveillance too. This started to be
introduced throughout Europe in 2017 following a scandal about defective
breast implants [234]. In the UK, a further scandal about teratogenic drugs
and pelvic mesh implants led to an Independent Medicines and Medical
Devices Safety Review, which in 2020 documented decades of indifference
to safety and recommended among many other things that regulation ‘needs
substantial revision particularly in relation to adverse event reporting and
medical device regulation” [503]. In May 2020, a new EU medical device reg-
ulation (2017/745) was supposed to require post-market surveillance systems
and a public database of anonymised incident reports; implementation was
postponed until May 2021. And in June 2020, the UK Parliament passed a
Medicines and Medical Devices Act that will enable ministers to amend the
existing regulations after Brexit. The mood music there, however, is to make
Britain a more attractive place for drug companies and medical device makers,
not a safer place for patients. Within Britain’s National Health Service, it’s
hard to make a career as a safety specialist®.

Now here’s an interesting question. If infusion pumps kill as many people
as cars or — in the USA — as guns, why aren’t people more worked up, as
they are about road safety and gun control? Well, the harm is both low-key
and diffuse. At your local hospital, such accidents probably kill less than one
person a month, and many of them won’t be noticed, as people on infusion
pumps tend to be fairly sick anyway. When they are noticed, they are more
likely to be blamed on the nurse, rather than on the medical director who
bought pumps from half a dozen different suppliers following nice lunches
with the sales folks. As a cause of death in the hospital, recorded safety usabil-
ity failures don’t make it into the top twenty, and so don’t get attention from
politicians or the press. (The exception is when a safety failure has a security
angle, as people are very sensitive indeed about hostile intent. I'll discuss this
in section 28.4.2 below.)

The standardisation of user interfaces is managed better in industries where
accidents and their causes are more visible. Road traffic accidents are fairly

“The UK NHS has a Healthcare Safety Investigations Branch, established in 2016, but it inves-
tigates what it’s told to, often has to keep its findings confidential, and doesn’t have or seek
enforcement powers to require other healthcare organisations to make changes [877].

28.2 Evaluation 1023

visible and most people drive, so car crashes and their causes are a topic of
conversation. The controls in cars are now fairly standard, with the accelerator
on the right, the brake in the middle and the clutch on the left. Things aren’t
perfect; if you're in a hurry, you might get in a rental car, drive off down the
freeway, then struggle to find the light switch as night falls. But it used to be
much worse. Some cars in the 1930s had the accelerator in the middle, while
the first mass-produced car, the Model T Ford, had a hand throttle and a pedal
gear-change, like a motorcycle. The average modern driver would have a hard
time getting such a car out of the rental lot.

28.2.4 Aviation safety

Aviation has much stronger safety incentives still: airliners are worth eight or
nine figures, crashes are front-page news, they cause pilots as well as passen-
gers to lose their lives, and airline CEOs may even lose their bonuses. Pilots pay
attention to accident reports, and are required to train on each type of plane
they fly. This has led the vendors to standardise cockpit design, starting with
the Boeing 757 and 767, which were designed from the start to be so similar that
a pilot trained on one could fly the other. If nurses were similarly required to
get a type rating for each infusion pump, that would cost real money; hospital
executives would pay attention, the vendors would eventually follow Boeing,
and a lot of lives could be saved.

Yet we find regulatory failure in aviation too, and an example was exposed
with the Boeing 737Max crashes. Since Boeing had bought McDonnell Dou-
glas in 1997 and become the only US firm making large aircraft, the Federal
Aviation Administration had come to see its role as supporting Boeing. The
company’s engineers were allowed to take over much of the safety evaluation
and certification work that the FAA had done in the past. An even more toxic
effect of the takeover was that McDonnell Douglas executives took over, the
company moved its headquarters from Seattle to Chicago, and was no longer
run by engineers but by finance people — who had already destroyed one engi-
neering company and whose goal now was to milk the maximum profits from
the new monopoly. Boeing’s traditional engineering culture was sidelined and
corners were cut [729]. Two crashes followed, in Indonesia and Ethiopia, killing
346 people. The cause was reminiscent of the Therac case a generation earlier:
a design error in software that surfaced as a life-threatening usability failure.

In order to compete with the latest model of Airbus, Boeing needed to make
the 737 more fuel efficient quickly, and this meant larger engines, which had
to be fitted further forward, or it would have required re-engineering the air-
frame to the point that it would have been a new plane for regulatory purposes,
and would have taken much longer to certify. The new engine location made
the aircraft harder to trim at high speeds, so Boeing added software called the

1024 Chapter 28 = Assurance and Sustainability

Maneuvering Characteristics Augmentation System (MCAS) to the flight con-
trol computer to compensate for this.

The MCAS software needed to know the aircraft’s angle of attack, and the
critical design error was to rely on one angle-of-attack sensor rather than two,
although these are often damaged by ground handlers and bird strikes. The
implementation error was that, with an incorrect angle-of-attack input, the
plane could get into a regime where the pilots needed to pull about 50kg on
the yoke to keep the plane level. This was compounded by an error in safety
analysis: the unintended activation of the MCAS software was not anticipated.
As a result, Boeing didn’t do a proper failure modes and effects analysis and
the software’s behaviour was not even documented in the pilot manual. The
pilots were not trained how to diagnose the problem or switch MCAS off. Boe-
ing had become complacent about the ability of pilots to cope with the chaos
of a cockpit emergency with many alarms going off at once [1057].

The company had also got away with bullying investigators over a similar
previous crash in the Netherlands in 2009, and initially hoped that the Indone-
sia crash could be blamed on pilot error [858]. The FAA responded to the crash
by sending an emergency airworthiness directive to all known U.S. operators of
the airplane, which consisted of inserting a warning notice in the airplane flight
manual [665]. However, the warning light that alerted pilots to disagreement
between the two sensors had been made an airline option, like a sun roof in a
car, and the operation of the switch that could disable MCAS was changed to
make it less intuitive [156]. A number of US pilots logged complaints, with one
describing the manual as ‘almost criminally insufficient’ [140]; but the FAA saw
such complaints as only relevant to air carrier operations and did not analyse
them for global safety hazards [664].

After the second crash in Ethiopia, other countries’ regulators started
grounding the 737Max, and the FAA could no longer protect them. Boeing had
lost $18.7bn in sales by March 2020, when the coronavirus pandemic closed
down commercial aviation sales, as well as $60bn in market capitalisation.
This was by some distance the world’s biggest ever software failure, in terms
of both lives lost and economic damage. The fix, approved by the FAA in
August 2020, involves not just a software change so that MCAS reads both
angle-of-attack sensors and deploys only once per flight and with limited stick
force; but a procedural change so that both sensors are checked pre-flight; an
update to pilot training; and a regulatory change so that the FAA, rather than
Boeing, checks each plane after manufacture [592]. Even so, pilots are worried
that the Ethiopian crash might still be repeated, as the plane could be difficult
to trim manually in some circumstances [482].

When analysing safety, it's not enough to think of it as a technical testing
matter. Psychology, incentives, institutions and power matter too. The power
of lobbyists, and the risk that regulators will be captured by the industry they’re
supposed to regulate, place real limits on what can be achieved by testing

28.2 Evaluation 1025

regimes. Over time, measures designed for risk assessment and risk reduc-
tion become industrialised and tend to become a matter of compliance, which
firms then seek to pass at minimum cost. It’s also important to stop thinking of
problems as ‘aerospace engineering’ versus ‘software engineering’, or ‘safety
engineering’ versus ‘security engineering’. If you want to be a good engineer
you need to try to understand every aspect of the whole system that might
be relevant.

28.2.5 The Orange book

The first serious computer security testing regime was the Orange Book — the
Trusted Computer Systems Evaluation Criteria [544]. We touched on this
in section 9.4, where I described the multilevel security model that the US
Department of Defense was trying to promote through it. Orange Book evalu-
ations were done from 1985-2000 at the NSA on computer systems proposed
for government use and on security products such as cryptographic devices.
In incentive terms, it was a collective relying-party scheme, as with insurance.

The Orange Book and its supporting documents set out a number of eval-
uation classes, in three bands. C1 meant just that there was an access-control
system; C2 corresponded to carefully configured commercial systems. In the
next band, Bl meant mandatory access control; B2 added covert channel anal-
ysis, a trusted path to the TCB from the user, and severe penetration testing;
while B3 required the TCB had to be minimal, tamper-resistant, and subject
to formal analysis and testing. At the top band, Al added a requirement for
formal verification. (Very few systems made it to that level.)

The evaluation class of a system determined what spread of information
could be processed on it. The example I gave in section 9.6.2 was that a sys-
tem evaluated to B3 could process information at Unclassified, Confidential
and Secret, or at Confidential, Secret and Top Secret.

When the Orange Book was written, the Department of Defense thought that
they paid high prices for high-assurance computers because the markets were
too small, and hoped that security standards would expand the market. But
Orange Book evaluations followed government work practices. A government
user would want some product evaluated; the NSA would allocate people to
do it; given traditional civil service caution and delay, this could take two or
three years; the product, if successful, would join the evaluated products list;
and the bill was picked up by the taxpayer. Evaluated products were always
obsolete, so the market stayed small, and prices stayed high®.

5To this day, most governments are hopeless at buying technology and pay several times the
market rate, if they make it work at all. The reasons are much broader and deeper than standards.
See for example section 10.4.4 on the £11bn failure of a project to modernise Britain’s National
Health Service, and section 23.5 for the $6bn failure of the Pentagon’s Joint Tactical Radio System.

1026 Chapter 28 = Assurance and Sustainability

Other governments had similar ideas. European countries developed the
Information Technology Security Evaluation Criteria (ITSEC), a shared scheme to
help their defense contractors compete against US suppliers. This introduced
a pernicious innovation — that the evaluation was not arranged by the relying
party (the government) but by the vendor. Vendors started to shop around
for the lab that would give their product the easiest ride, whether by asking
fewer questions, charging less money, taking the least time, or all of the above.
Contractors could obtain approval as a commercial licensed evaluation facility
(CLEF), and in theory the CLEF might have its license withdrawn if it cut
corners. That never happened.

28.2.6 FIPS 140 and HSMs

The second evaluation scheme promoted by the US government in the 20th
century was NIST’s FIPS 140 scheme for assessing the tamper-resistance of
cryptographic processors. This was aimed at helping the banking industry as
well as the government, and as I described in section 18.4 it uses a number
of independent laboratories as contractors. Launched in 1994, it is still going
strong today, and is favoured by US customers of cryptographic equipment.

There are two main failure modes of FIPS 140. The first is that it covers
the cryptographic device’s hardware, not its software, and many FIPS 140
evaluated devices (even at the highest levels) run applications with intrinsic
vulnerabilities. Weak algorithms, legacy modes of operation and vulnerable
APIs are mandated by bank standards bodies for backwards compatibility,
as described in section 20.5. The fix for this has been a growing emphasis on
standards set by PCI, the payment industry’s self-regulation scheme, which I
describe in section 12.5.2.

The second is that the FIPS 140-1 standard has a big gap between level 3 and
level 4 for historical reasons I discussed in section 18.4. FIPS 140 level 3 is easy
to obtain (you just pot the circuit in epoxy to make it inaccessible to casual
probing) and some level-3 devices are not too hard to break (you just scrape
off the epoxy with a knife). Level 4 is really hard, and only a few devices ever
made that grade. So many vendors aim at what the industry calls, informally,
‘level 3.5". As this doesn’t have any formal expression in the FIPS standard,
firms often rely on the Common Criteria instead when talking to customers
outside the USA.

28.2.7 The common criteria

This sets the stage for the Common Criteria. Following the collapse of the
Soviet Union in 1989, military budgets were cut, and it wasn’t clear where
the opponents of the future would come from. Eventually the USA and its

28.2 Evaluation 1027

allies agreed to scrap their national schemes and replace them with a single
standard — the Common Criteria for Information Technology Security Evalua-
tion [1398].

The work was substantially done in 1994-1995, and the European ITSEC
model won out over the Orange Book approach. Evaluations at all but the high-
est levels are done by CLEFs, are supposed to be recognised in all participating
countries, and vendors pay for them.

The innovation was support for multiple security policies. Rather than
expecting all systems to conform to Bell-LaPadula, the Common Criteria
evaluate a product against a protection profile (PP), which is a set of security
functional requirements and assurance requirements for a class of product.
You can think of it as a detailed security policy, but oriented at products rather
than systems, and expanded into several dozen pages of detail. There are
protection profiles for operating systems, access control systems, boundary
control devices, intrusion detection systems, smartcards, key management
systems, VPN clients, voting machines, and even transponders that identify
when a domestic waste bin was last emptied. Anyone could propose a
protection profile and have it evaluated by the lab of their choice. It's not that
the defence community abandoned multilevel security, so much as tried to
mainstream its own evaluation system by getting commercial firms to use it
for other purposes too. But an evaluation depends entirely on what was mea-
sured and how. Some aspects of security were explicitly excluded, including
cryptography, emission security (as the NATO standards were classified) and
administrative procedures (which was bad news for usability testing).

The Common Criteria have enjoyed some limited success. Its evaluations
are used in specialised markets, such as smartcards, hardware security mod-
ules, TPMs and electronic signature devices, where sectoral due-diligence rules
(such as PCI) or regulation (such as electronic signature laws) create a compli-
ance requirement. Evaluations of such devices were kept honest for a while
by an informal cartel run by SOG-IS (the senior officials group — information
security) — a committee of representatives of the intelligence agencies of EU
countries. However, the operation of the CC outside Europe has been a bit of a
joke, and even within Europe it has been undermined by both companies and
countries gaming the system. The UK withdrew in 2019.

28.2.7.1 The gory details

To discuss the Common Criteria in detail, we need some jargon. The product
under test is known as the target of evaluation (TOE). The rigor with which the
examination is carried out is the evaluation assurance level (EAL) and can range
from EAL1, for which functional testing is sufficient, all the way up to EAL?,
which demands not only thorough testing but a formally verified design. The

1028 Chapter 28 = Assurance and Sustainability

highest evaluation level commonly obtained for commercial products is EAL4,
although in 2020 there are 85 products at EAL6 or above out of 1472 certified
under CC, and many smartcards are evaluated to EAL44, which means EAL4
plus one or more of the requirements set at higher levels.

When devising something from scratch, the idea is to first work out a threat
model, then create a security policy, refine it to a protection profile (PP) and eval-
uate it (if a suitable one doesn’t exist already), then do the same for the security
target, then finally evaluate the actual product. A protection profile consists of
security requirements, their rationale, and an EAL, all for a class of products.
It’s supposed to be expressed in an implementation-independent way to enable
comparable evaluations across products and versions. A security target (ST) is
a refinement of a protection profile for a specific product. One can evaluate a
PP to ensure that it’s complete, consistent and technically sound, and an ST
too. The evaluations are filed with the national authority, which is typically
the defensive arm of the local signals intelligence agency. The end result is a
registry of protection profiles and a catalogue of certified products.

There is a stylized way of writing a PP or ST. For example, Fco_NRO is a func-
tionality component (hence F) relating to communications (co), and it refers
to non-repudiation of origin (Nro). Other classes include Fau (audit) and Fcs

(crypto support).
There are also catalogues of:

m threats, such as T.Load_Mal — “Data loading malfunction: an attacker may
maliciously generate errors in set-up data to compromise the security
functions of the TOE;”

= gssumptions, such as A.Role_Man — “Role management: management
of roles for the TOE is performed in a secure manner” (in other
words, the developers, operators and so on behave themselves);

= organizational policies, such as p.crypt_std — “Cryptographic standards:
cryptographic entities, data authentication, and approval functions must
be in accordance with ISO and associated industry or organizational
standards;”

= objectives, such as 0.F1t_Ins — “Fault insertion: the TOE must be resis-
tant to repeated probing through insertion of erroneous data;”

= gssurance requirements, such as ADO_DEL. 2 — “Detection of modification:
the developer shall document procedures for delivery of the TOE or
parts of it to the user.”

A protection profile should now contain a rationale, which typically consists
of tables showing how each threat is controlled by one or more objectives, and
in the reverse direction how each objective is necessitated by some combination
of threats and environmental assumptions. It will also justify the selection of
an assurance level and requirements for strength of mechanism.

28.2 Evaluation 1029

The fastest way to get the hang of this may be to read the core CC docu-
mentation itself, then a few profiles. The quality varies widely. For example, a
protection profile for automatic cash dispensers, written in management-speak
with clip art, "has elected not to include any security policy” and misses many of
the problems that were well known when it was written in 1999 [342]. A profile
for voting machines from 2007 [563] was written more in politicians” language,
but at least with reasonable clarity®.

Protection profiles for smartcards emphasise maintaining confidentiality
of the chip design by imposing NDAs on contractors, shredding waste and
so on [656], while in practice most attacks on smartcards used probing or
power-analysis attacks for which knowledge of the chip mask was irrelevant.
This has developed into a political row, as I discussed in section 18.6.4: the
smartcard vendors have pushed the evaluation labs into demanding that all
cryptographic products be secure against ‘advanced persistent threats’. The
fight is over assurance requirement Ava_van. s, which essentially requires that
the entire development environment should be air-gapped, like the Top Secret
systems at an intelligence agency. An air gap in itself won’t stop a capable
opponent, as the Iranians found out with Stuxnet and the Americans with
Snowden; but it causes real inconvenience to normal IT companies who rely
on Github and other cloud-based systems. And that’s entirely the point: the
smartcard firms don’t want HSMs or enclaves encroaching on their markets.

28.2.7.2 What goes wrong with the Common Criteria

By the time the second edition of this book came out in 2008, industry people
had a lot of complaints about the Common Criteria, which I discussed there
and which I update more briefly here.

= The biggest complaint for years has been the cost and bureau-
cracy of the process. A startup wanting to sell devices such as
HSMs will nowadays have to spend several million Euros and
several years of effort to navigate the process. In practice the
CC have become a moat that defends established cartels.

= The next biggest is that, as well as avoiding ‘technical physical” aspects
such as Emsec or crypto algorithms, the CC ignore administrative
security measures, which means in practice ignoring usability. In
general, user interfaces are considered to be somebody else’s problem.

= Protection profiles are designed by their sponsor firms to rig the market.
I mentioned above how the smartcard firms demand that HSM vendors

6This appears designed to support French firms’ drive to export population registration systems,
and it is these rather than the actual voting machines that are often the real weak point in elec-
tions — as I discussed in section 7.4.2.2.

1030 Chapter 28 = Assurance and Sustainability

also use air-gapped systems to push their costs up. The gaming often
leads to insecure products: vendors write their PPs to cover the things
they can do easily. They might evaluate the boot code, but leave most of
the operating system outside the scope. Recall the API attacks on HSMs
described in section 20.5; some vulnerable HSMs were CC-certified,
and similar failures are seen in other CC-certified products too.

= Sometimes the protection profiles might be sound, but the way they’re
mapped to the application isn’t. In section 26.5.2 I discussed the
European eIDAS regulation, which requires businesses to recognise
digital signatures made using smartcards, and encouraged governments
to demand them for interactions such as filing tax returns. The main
problem in this application, as I discussed in section 18.6.1, is the lack
of a trusted interface. As that problem’s too hard, it’s excluded, and the
end result is a ‘secure’ signature on whatever the virus or Trojan in your
PC sent to your smartcard. This hole was duly slathered with several
layers of fudge. PPs were written for a smartcard to function as a ‘Secure
Signature-Creation Device’; other PPs appeared for HSMs, and for the
signature activation module (SAM) — the server software that passes them
digital objects to be signed. The HSM plus the SAM are evaluated as a
qualified signature creation device (QSCD) [29]. But the front-end server
software used by the service provider is only audited, not certified,
and if you're lucky the app on your phone or tablet might have RASP
on it as a malware countermeasure, as I discussed in section 12.7.4.
That is what lobbyists can achieve: the whole certification machinery
has been twisted to allow services like Docusign inside the tent, so
long as they use a CC certified HSM to hold their signature keys.

= The CC claim not to assume any specific development methodology, but
in practice assume a waterfall approach. There’s a nod in the direction
of policy evolving in response to experience but re-evaluation of PPs
or products is declared to be outside the scope. So they’re unable to
cope with normal security development lifecycles, or with commer-
cial products that get monthly security patches. (The same goes for
FIPS; of the available standards, only PCI can cope with updates.)

m The Criteria are technology-driven, when in most applications
it’s the business processes that should drive protection deci-
sions. We're learning the hard way that hand-marked paper
ballots are way better than voting machines for all sorts of rea-
sons. Security is a property of systems, not of products.

= The rigour of the evaluations varies widely between countries, with
Germany generally considered to be almost impossibly difficult,
the Netherlands in the middle, while Spain and Hungary let their

28.2 Evaluation 1031

CLEFs give sponsors an easy ride. Nobody within the system can
actually say this in public without causing a diplomatic incident,
so it cannot be fixed. The costs also vary, with an evaluation in
Germany costing perhaps three times what you pay in Hungary.

m The Common Criteria brand isn’t well defended. I described in
section 12.6.1.1 how PIN entry devices claimed by VISA to have
been evaluated under the Common Criteria were insecure; GCHQ's
response was that as the evaluation had not been registered with them,
and the devices were not claimed to be ‘CC certified’ it wasn’t their
problem. So suppliers are free to continue describing a defective termi-
nal as 'CC evaluated’. A business would not tolerate such abuse of its
trademark.

= More generally, there’s nothing on liability: “The procedures for use of
evaluation results in accreditation are outside the scope of the CC’.

In the second edition of this book, I took the view that Common Criteria eval-
uations were somewhat like a rubber crutch. Such a device has all sorts of uses,
from winning a judge’s sympathy through wheedling money out of a gullible
government to whacking people round the head. Just don’t try to put serious
weight on it.

28.2.7.3 Collaborative protection profiles

In an attempt to deal with these criticisms, collaborative protection profiles
(cPPs) started to appear in 2015. The idea was to move away from the EAL
levels towards a single protection profile for each class of secure device, and to
develop that profile as a collaborative effort among firms in an industry, with
input from government and academics [463]. The hope was to stop security
evaluations being abused in strategic games between competitor firms. The
results of this can now be seen in 2020 by browsing the catalogue of evaluated
products on the CC website. Vendors in France and Germany still offer many
smartcards, and related products such as electronic signature creation devices,
with certificates at EAL4+ or EALS6; that’s the legacy of the SOG-IS cartel.
Outside Europe, though, the CC system has been completely captured by
vendor interests. American firms offer many firewalls, routers and other
networking products, evaluated according to industry cPPs; and Japanese
firms offer a range of printers and fax machines. So what is a secure fax
machine — does it encrypt faxes? Not at all; it just behaves as you'd expect a
fax machine to (if you're old enough to remember them). In short, cPPs have
become a marketing mechanism, and are now undermining the traditional CC
core. Firms wanting to sell electronic signature systems can have them eval-
uated under a cPP that’s considered EAL4, and most customers can’t tell the
difference between that and an EAL4+ evaluation done under the old rules.

1032 Chapter 28 = Assurance and Sustainability

28.2.8 The ‘Principle of Maximum Complacency’

There’s a substantial literature on the economics of standards, as there are
many contexts in which people have to choose between them. If you're a bright
teenager, do you apply to a top university and risk getting a second-class
degree, or should you go to a local college and be a star? Should you worry
about grade inflation eroding the value of your degree in either case? If you're
raising money for a startup, should you get your money from business angels
or try to get a big-name venture fund on board? An IT vendor wondering
whether to go for some kind of certification faces somewhat similar choices.
And even nations play certification games. The large service firms all have
their EU headquarters in Ireland as it has long been Dublin’s policy to have
the most relaxed regime of privacy regulation in Europe, as well as the lowest
corporate taxes. What options are there for dealing with such games?

The most influential model of such choices is a 2006 paper on forum shop-
ping by Josh Lerner and Jean Tirole’. Their model is a three-stage game in
which the sponsor selects a certifier, the certifier then studies the offering and
perhaps demands some changes, and finally the end-users make decisions to
buy or not [1145]. The big question is whether competition between certifiers
will result in better standards, or in a race to the bottom. In most cases the
principle of maximum complacency wins out: owners seek endorsement from a
single certifier, and resist attempts to get them to improve the product. Only in
certain circumstances can competition improve quality. One example is where
NGOs compete to certify products as sustainable: there, the certifier cares more
about the users’” outcome than the sponsors do, and the desired property isn’t
strongly controlled by a single sponsor. Another is competition between elite
universities: students have no market power, and enough employers will pay
a premium for elite graduates that there’s plenty of incentive for Cambridge to
compete with Oxford, MIT and Berkeley.

Where there are more players than just the sponsor, the certifier and the users,
things get more complicated.

Certification games take place in a much larger ecosystem. A company
invents some new product and sells it to some customers. The customers
then want a standard, and some tests to satisfy their auditors. They may
want the inventor to license the product to their established suppliers, or at
least to a second supplier. Other inventors pile in, and all of a sudden there’s
a patent pool. The firms negotiate long and hard to get their patents in to
maximise their share of the royalties; this often results in horrible standards
that are insecure and hard to fix (see section 14.2.4 on smart meters; there
are many more examples). The patent pools may become cartels that prevent
new market entrants; this complaint has been made of the GSMA standards

"Tirole won the 2014 Nobel for this and much other work in market power and regulation.

28.2 Evaluation 1033

around 5G (see section 22.3.4). The GSMA has also been criticised for its
Network Equipment Security Assurance Scheme (NESAS) where the vendor pays
for a security assessment that only takes a few days (and now allows remote
audits because of the pandemic). In short, industrial strategy doesn’t optimise
for great products so much as for monopolies or cartels.

Where a market is dominated by a monopoly, customer and political pressure
may eventually cause the monopolist to pay attention to security, and it can
even be rational for a monopolist to internalise some of the security externali-
ties (see the Microsoft case in section 27.5.3). But in the general case, of complex
supply chains with some steps dominated by cartels, it can be a lot harder. The
complexities in security certification are roughly: (a) the relying parties — those
at risk if the thing gets hacked — may be customers, third parties such as insur-
ers, or the public; (b) the sponsors may be vendors, customers, relying parties
or associations of any of these; (c) the testers may compete on price or on qual-
ity, and this means the lowest quality threshold they can get away with subject
to not losing a license from an accreditation body, which may be a government
entity or a trade association; (d) there may be more than one accreditation body,
plus politics between them. So we can have multiple layers of indirection and
we occasionally even get competition about “who certifies the certifiers”. To
make sense of things we have to look at actual cases in detail.

In the case of CC-evaluated products at EAL4 or above such as smartcards
and HSMs, suppose Alice’s company sells a product to Bob’s Bank and gets
Charlie the certifier to say it’s secure, after which Bob’s customer Dorothy
defrauds another customer Eve and absconds. How does the evaluation
change things when Eve now claims her money back from Bob in court? Bob
will argue he wasn’t negligent because he operated according to the standards
of the industry, so isn’t liable to reimburse Eve. This argument is even more
powerful if Charlie signed off on his system. Charlie’s role is not so much a
technical authority as a liability shield. So Alice will work only as hard as she
has to to satisfy Charlie. Charlie will compete with his competitors and a race
to the bottom will ensue. The upshot in real life was that the payment card
brands set up PCI to take over Charlie’s role. We discussed in section 12.5.2
how such standards shift liability in banking: they protect the bank more than
the merchant (surprise, surprise).

In the case of electronic signature devices, as we discussed in section 28.2.7.2
above, smartcard industry lobbying led Europe to pass signature laws that
gives special force to signatures created with certified products, even when
these are insecure. Lobbying by online service signature providers such as
Docusign got them on board too. The ultimate effect is not security but a tax.
(And to file a tax return in some EU countries you have to get it signed by
such a service, adding an extra twenty Euros to your tax accountant’s fee.)

So should certification be voluntary? An interesting case study was by Ben
Edelman of the Trust-e scheme to certify websites. He discovered that certified

1034 Chapter 28 = Assurance and Sustainability

websites were more likely to attempt to load malware on to your computer,
rather than less. Adverse selection turned the scheme into a negative signal
of quality: the weaker vendors certified their websites, while well-known
consumer brands didn’t bother [612]. The reason for this was that Trust-e cer-
tification, being voluntary, was cheap, and the technical barrier to certification
was also low.

But although industry lobbies like to talk of ‘cutting red tape’, how many
might be happy with the outright abolition of a government-backed safety or
security standard or agency? In practice, lobbyists seek to capture regulators
rather than abolish them. Many regulatory regimes function both as moats to
prevent incumbents being challenged too easily by startups and also as liability
shields. As an example, we discussed in section 17.3 how Amazon, Microsoft,
Google and IBM have restricted sales of face-recognition software —among the
most controversial of their products — until it’s regulated.

28.2.9 Next steps

Since Brexit, the UK and Europe have diverged. Europe passed a Cybersecu-
rity Act (regulation 2019/881) which strengthens the European Network and
Information Security Agency (ENISA) and places it at the centre of its strategy.
ENISA is to act as a centre of expertise and liaise with sectoral regulators in
banking, aviation, energy and telecomms, as well as the data protection author-
ities. I expect this will be of major importance in the long run, as safety and
security regulation are coming together and will inevitably be managed on a
sectoral basis by the standards bodies for cars, aircraft, medical devices, rail-
way signals and so on. I will return to this later.

As for the certification of information security products, its approach might
be described as ‘one more heave: it is setting up an EU Cybersecurity Certifi-
cation Framework under ENISA, which will take over as the top-level certifier.
It’s supposed to “help avoid the multiplication of conflicting or overlapping
national cybersecurity certification schemes and thus reduce costs for under-
takings operating in the digital single market” [654]. It will apply to services
and processes as well as products. As I write in 2020, the details are still being
worked out, but the intention is that sponsoring bodies of EU member states
will run certification at three levels, ranging from ‘basic’, which entails the
vendor self-assessing conformance with standards and assuming responsi-
bility for compliance, through ‘substantial’, which will involve verification
of security functionality, to ‘high’, which will involve ENISA taking over
from SOG-IS the supervision of the smartcard /HSM/e-signature kit currently
evaluated at EAL4 and above.

The UK government was concerned about certification for many years and
was involved in pushing cPPs in order to try to make certification more stan-
dardised. But by 2017 they had come to the conclusion that the Criteria were

28.2 Evaluation 1035

neither necessary nor sufficient for security, and GCHQ withdrew as a sponsor
from 2019. It no longer licenses CLEFs or approves certifications, although
UK organisations may continue to use certifications created elsewhere®. It
has long had its own national product certification scheme, now known as
commercial products assurance (CPA), but the only consumer product for which
it currently maintains CPA certification is the smart meter discussed in
section 14.2.4. Future legislation will require basic security for IoT devices,
including a ban on default passwords and a requirement for a software
update mechanism; this is being done in harness with ETSI, leading to a draft
European standard ETSI EN 303 645 V2.1 [646].

The direction of travel is now to look at process rather than product, both for
firms developing critical equipment for Britain’s national infrastructure, and
more generally. The general scheme, Cyber Essentials, is mandated for govern-
ment contractors supplying IT services or handling personal information.

There was already the ISO 27001 standard for security management, which
we mentioned in section 12.2.4: this is expensive, having been turned into
an income stream by the big accountancy firms, and about as useless as CC.
Almost all of the large security breaches happen at firms with ISO 27001
certification, where the auditor said something was OK that wasn’t. The
auditors have to rely on what the firms tell them, and a firm that doesn’t know
how to protect its systems will just say “We have a great process for X" when
they don’t. Why should a small business owner cough up tens of thousands
for that, unless they need it to bid for government contracts? And why should
a government impose such a tax? So the Cyber Essentials scheme focuses on
the very basic stuff and costs only £300 for a validated self-certification. Its
target was small and medium enterprises, but the first firms to be actually
certified under it were large firms like banks and phone companies who
wanted to add every single tassel to their corporate due diligence.

As governments bicker, we've seen the emergence of a private sector stan-
dard, Bitsight. Recall how in the first chapter I remarked that in the corporate
world, a trusted system often means one acceptable to insurers. Recall also
how in section 2.2.1.6 we described how the NSA has a system called Mugshot
that crawls the Internet looking for vulnerable systems, and another called
Xkeyscore that enables cyber-warriors to find vulnerable systems near a tar-
get of interest? Well, Bitsight does Mugshot for the private sector, but instead
of attacking companies’ systems it rates firms for cybersecurity risk by count-
ing how many of their servers are not patched up to date, and how many other
indicators of compromise are visible. They have come to dominate insurance
market assessments because they give a single numerical rating at a time when

80ne of my spies in the Doughnut says ‘We absolutely recognise any CC certificate from any
producing nation as though it were our own and our assurance processes assign that certificate
precisely the weight it deserves :-)’

1036 Chapter 28 = Assurance and Sustainability

the insurance industry, which is cyclical, is having its profits squeezed and can
no longer get clients to fill out long questionnaires about their cybersecurity
practices. This makes sense in the Lerner-Tirole model, as Bitsight is motivated
to keep ahead of possible competitors, just like an elite university. Their ratings
are bringing more honesty to the ecosystem than most of the schemes promoted
by governments and audit firms, but have some interesting side-effects. For
example, service firms are now less willing to sponsor capture-the-flag compe-
titions for schools; if the Bitsight crawler sees a vulnerable system in your IP
address space that you set up as a target for such an exercise, it can cut your
Bitsight rating by more than 10%, which can cost you real business.

So much for certifying products and business processes. In the next section,
we look more closely at dependability metrics from the viewpoints of failure
analysis, bug tracking, cross-product dependencies, open-source software and
the development team.

28.3 Metrics and dynamics of dependability

As dependability becomes a lifetime property we need better ways of mea-
suring it. We know that it is often a function of the development team; we
discussed the capability maturity model in section 27.5.3. To get secure code,
you need to hire smart people with a suitable mix of skills and get them to work
together on shared projects so they learn to work together. In the process, you
measure how well they’re doing and improve it by giving feedback and con-
stantly improving the process and tools. But how do you do the measurement?

This has two main aspects: reliability growth, as systems become more
dependable over time with testing and bug fixing, and vulnerability disclosure,
as bugs are found and may or may not be fixed.

28.3.1 Reliability growth models

The growth of reliability as systems get more testing, both in the lab and in the
field, is of interest to many more people than just software engineers; nuclear,
electrical and aerospace engineers all depend on reliability models and metrics.

In the simplest possible case — where the tester is trying to find a single bug in
a system — a reasonable model is the Poisson distribution: the probability p that
the bug remains undetected after ¢ statistically random tests is given by p = ¢!
where E depends on the proportion of possible inputs that it affects [1176].
So where the reliability of a system is dominated by a single bug — say when
we’re looking for the first bug in a system, or the last one — reliability growth
can be exponential.

28.3 Metrics and dynamics of dependability 1037

But extensive empirical investigations have shown that in large and complex
systems, the likelihood that the t-th test fails is not proportional to e =% but to k /t
for some constant k. So reliability grows very much more slowly. This was first
documented in the bug history of IBM mainframe operating systems [18], and
has been confirmed in many other studies [1200]. As a failure probability of k/¢
means a mean time between failure (MTBF) of about t/k, reliability grows lin-
early with testing time. This result is often stated by the safety critical systems
community as ‘If you want a mean time between failure of a million hours,
then you have to test for (at least) a million hours’ [360]. This has been one of
the main arguments against the development of complex, critical systems that
can’t be fully tested before use, such as President Reagan’s ‘Star Wars’ ballistic
missile defence program.

The reason for the k/t behaviour emerged in [250] and was proved under
more general assumptions by observing that the Maxwell-Boltzmann statistics
developed to model ideal gases apply to statistically independent bugs
too [313]. This model gives a number of other interesting results. If you can
assume that the bugs are statistically independent, then the k/t reliability
growth is the best possible: the rule that you need a million hours of testing
to get a million hours MTBEF is inescapable, up to some constant multiple that
depends on the initial quality of the code and the scope of the testing. This
can be seen as a version of ‘Murphy’s Law’: that the number of defects which
survive a selection process is maximised.

These statistics give a neat link between evolutionary models of software and
the evolution of a biological species under selective pressure, where the ‘bugs’
are genes that reduce fitness. Just as software testing removes the minimum
possible number of bugs consistent with the tests applied, biological evolution
enables a species to adapt to a changed environment at a minimum cost in
early deaths while preserving as much diversity as possible to help the species
survive future environmental shocks. For example, if a population of rabbits
is preyed on by snakes, they will be selected for alertness rather than speed.
Their variability in speed will remain, so if foxes arrive in the neighbourhood
the rabbit population’s average running speed can rise sharply under selective
predation’.

The evolutionary model also points to fundamental limits on the reliability
gains to be had from reusable software components such as objects or libraries;
well-tested libraries simply mean that overall failure rates will be dominated
by new code. It also explains the safety-critical systems community’s observa-
tion that test results are often a poor performance indicator [1176]. The failure
time measured by a tester depends only on the initial quality of the program,

“More formally, the fundamental theorem of natural selection says that a species with a high genic
variance can adapt to a changing environment more quickly [695].

1038 Chapter 28 = Assurance and Sustainability

the scope of the testing and the number of tests, so it gives virtually no further
information about the program’s likely performance in another environment.
There are also some results that are unexpected, but obvious in retrospect: for
example, each bug’s contribution to the overall failure rate is independent of
whether the code containing it is executed frequently or rarely — intuitively,
code that is executed less is also tested less. Finally, different testers should
work on a program in parallel rather than in series.

So complex systems only become reliable following prolonged testing
by diverse testers. This gives the advantage to tried-and-tested designs for
machinery, as we gain statistical knowledge of how it fails. Mass-market
software started to be used at sufficient scale to enable thorough testing,
especially once crash reports started to be sent to the vendor. The use of
regression testing by development teams meant that billions of test cases can
be exercised overnight with each new build. Services that move to the cloud
can be monitored for failure all the time.

So what are the limits to reliability? First, new bugs are introduced by the new
code in new versions dictated by platform business models, and second, adver-
sarial action brings in a significant asymmetry between attack and defence.

Let’s take a simplified example. Suppose a product such as Windows has
1,000,000 bugs each with an MTBF of 1,000,000,000 hours. Suppose that Ahmed
works for the Iranian Revolutionary Guard to create tools to break into the US
Army’s network, while Brian is the NSA guy whose job is to stop Ahmed. So
he must learn of the bugs before Ahmed does.

Ahmed has only half a dozen people, so he can only do 10,000 hours of test-
ing a year. Brian has full Windows source code, dozens of PhDs, oversight
of the commercial evaluation labs, an inside track on CERT, an information
sharing deal with other Five Eyes member states, and also runs the govern-
ment’s scheme to send round consultants to critical industries such as power
and telecomm:s to find out how to hack them (pardon me, to advise them how
to protect their systems). This all adds up to the equivalent of 100,000,000 hours
a year of testing.

After a year, Ahmed finds 10 bugs, while Brian has found 100,000. But the
probability that Brian has found any one of Ahmed’s bugs is only 10%, and
the probability that he’ll have found them all is negligible. And Brian’s bug
reports will have become such a firehose that Microsoft will have found some
excuse to stop fixing them. In other words, the attacker has thermodynamics
on his side.

In real life, vulnerabilities are correlated rather than independent; if 90%
of your vulnerabilities are stack overflows, and you introduce compiler
technology such as stack canaries and ASLR to trap them, then for modelling
purposes there was perhaps only a single vulnerability. However, it’s taken
years to sort-of-not-quite fix that one, and new ones come along all the time.
So if you are actually responsible for Army security, you can’t just rely on

28.3 Metrics and dynamics of dependability 1039

some commercial off-the-shelf product you bought a few years ago. One way
to escape the statistical trap is simplicity — which, as we saw in Chapter 9,
steers you towards policies such as mandatory access controls, architecture
such as multilevel secure mail guards, and much else besides. The more
modern approach is a learning system that observes what’s broken and fixes
it quickly. That in turn means vigilant network monitoring, breach reporting,
vulnerability disclosure and rapid patching —as we described in section 27.5.7.

28.3.2 Hostile review

When you really want a protection property to hold, it’s vital that the design
and implementation be subjected to hostile review. It will be eventually, and it’s
likely to be cheaper if it’s done before the system is fielded. As we’ve seen in
one case history after another, the motivation of the attacker is critical; friendly
reviews, by people who want the system to pass, are essentially useless com-
pared with contributions by people who are seriously trying to break it. That’s
the basic reason evaluations paid for by the vendor from one of a number of
competing evaluators, as in the Common Criteria and ISO 27001, are funda-
mentally broken. (Recall our discussion in section 12.2.6 of auditors’ chronic
inability to detect fraud by the executives who hired them. One hedge fund
manager who made $100M from shorting Wirecard, Jim Chanos, said, “When
people ask us, who were the auditors, I always say “Who cares?” Almost every
fraud has been audited by a major accounting firm.” [30].)

To do hostile review, you can motivate attackers with either money or hon-
our. An example of the first was the Independent Validation and Verification
(IV&V) program used by NASA for manned space flight; contractors were
hired to trawl through the code and paid a bonus for every bug they found.
An example of the second was in the evaluation of nuclear command and con-
trol, where Sandia National Laboratories and the NSA vied to find bugs in each
others” designs. Another was at IBM, which maintained a leading position in
cryptography for years by having two teams, one in New York and the other
in North Carolina, who would try to break each others” work, like Cambridge
and Oxford trying to win a boat race every year. Yet another is Google’s Project
Zero where the company devotes real engineering effort to finding vulnerabil-
ities both in products that it relies on, such as Linux, and competitor products
such as iOS, and aggressively discloses them after 90 days’ notice in order to
force them to be fixed. This gets over 97% of them fixed [589].

Review by academics is, at its best, in this category. We academics win
our spurs by breaking stuff, and get the highest accolades by inventing new
types of attack. We compete with each other — Cambridge against Berkeley
against CMU against the Weizmann. The established best practice, though,
is to motivate hostile review with money, and specifically via bug bounty

1040 Chapter 28 = Assurance and Sustainability

programs where vendors offer big rewards for reports of vulnerabilities. As
we noted in section 27.5.7 above, Apple offers $1m for anyone who can hack
the iOS kernel without requiring any clicks by the user; this is one significant
metric for iOS security°.

One way to turbocharge either academic review or a bug bounty program is
to open your design and implementation, so all the world can look for bugs.

28.3.3 Free and open-source software

Should security mechanisms be open to scrutiny? The historical consensus is
that they should be. The first book in English on cryptography was written
in 1641 by Oliver Cromwell’s cryptographer John Wilkins. In ‘Mercury, or
the Secret and Swift Messenger” he justified discussing cryptography with the
remark ‘If all those useful Inventions that are liable to abuse, should therefore
be concealed, there is not any Art or Science which might be lawfully profest’.
The first exposition of cryptographic engineering, Auguste Kerckhoffs ‘La
Cryptographie Militaire’ in 1883, recommended that cryptographic systems
should be designed in such a way that they are not compromised if the
opponent learns the technique being used: security must depend only on the
key [1044]. In Victorian times, the debate also touched on whether locksmiths
should discuss vulnerabilities in locks; as I noted in section 13.2.4, one book
author pointed out that both locksmiths and burglars knew how to pick locks
and it was only the customers who were ignorant. In section 15.8 I discussed
the partial openness found even in nuclear security.

The free and open-source software (FOSS) movement extends this philoso-
phy of openness from the algorithms and architecture to the implementation
detail. Many security products have publicly-available source code, of which
the first was probably the PGP email encryption program. The Linux and
FreeBSD operating systems and the Apache web server are also open-source
and are widely relied on: Android runs on Linux, which is also dominant in
the world’s data centres, while iOS is based on FreeBSD.

Open-source software is not entirely a recent invention; in the early days of
computing, most system software vendors published their source code. This
started to recede in the early 1980s when pressure of litigation led IBM to adopt
an ‘object-code-only” policy for its mainframe software, despite bitter criticism
from its users. The pendulum has swung back since 2000, and IBM is one of
the stalwarts of open source.

There are a number of strong arguments in favour of open software, and
a few against. First, while many closed systems are developed in structured
ways with waterfall or spiral models of the initial development and later

190n this metric the most secure system on earth might be Bitcoin, as anyone who could break
the signature mechanism could steal billions.

28.3 Metrics and dynamics of dependability 1041

upgrades, the world is moving towards more agile development styles, a
tension described by Eric Raymond as “The Cathedral and the Bazaar” in
an influential 1999 book of that name [1587]. Second, systems are getting so
complex and toolchains so long that often the bug you're trying to bust isn’t
in the code you wrote but in an operating system or even a compiler on which
you rely, so you want to be able to find bugs there quickly too, and either get
them fixed or contribute a fix yourself. Third, if everyone in the world can
inspect and play with the software, then bugs are more likely to be found and
fixed; in Raymond’s famous phrase, “To many eyes, all bugs are shallow”.
Fourth, it may also be more difficult to insert backdoors into such a product
(though people have been caught trying, now that an exploit can sell for seven
figures). Finally, for all these reasons, open source is great for confidence.

The proprietary software industry argues that while openness helps the
defenders find bugs so they can fix them, it also helps the attackers find bugs
so they can exploit them. There may not be enough defenders for many open
products, as the typical volunteer finds developing code more rewarding
than bug hunting (though bug bounties are starting to shift this). Second, as I
noted in section 28.3.4, different testers find different bugs as their test focus is
different. As volunteers will look at cool bits of code such as the crypto, smart
cyber warriors or bug-bounty hunters will look at the boring bits such as the
device drivers. In practice, major vulnerabilities lurk for years. For example,
a programming bug in PGP versions 5 and 6 allowed an attacker to add an
extra escrow key without the key holder’s knowledge [1703].

So will the attackers or the defenders be helped more? Under the standard
model of reliability growth, we can show that openness helps attack and
defence equally [75]. Thus whether an open or proprietary approach works
best in a given application will depend on whether and how that application
departs from the standard assumptions, for example, of independent vulner-
abilities. In the end, you have to go out and collect the data; as an example, a
study of security bugs found in the OpenBSD operating system revealed that
these bugs were significantly correlated, which suggests that openness there
was a good thing [1490].

So where is the balance of benefit? Eric Raymond'’s influential analysis of the
economics of open source software [1588] suggests five criteria for whether
a product would be likely to benefit from an open source approach: where it
is based on common engineering knowledge rather than trade secrets; where
it is sensitive to failure; where it needs peer review for verification; where it
is sufficiently business-critical that different users will cooperate in finding
and removing bugs; and where its economics include strong network effects.
Security passes all these tests.

The law-and-economics scholar Peter Swire has explained why governments
are intrinsically less likely to embrace disclosure: although competitive forces
drove even Microsoft to open up a lot of its software for interoperability and

1042 Chapter 28 = Assurance and Sustainability

trust reasons, government agencies play different games, such as expanding
their budgets and avoiding embarrassment [1857]. Yet even there, the security
arguments have started to prevail: from tentative beginnings in about 1999,
the US Department of Defense has started to embrace open source, notably
through the SELinux project I discussed in section 9.5.2.

So while an open design is neither necessary nor sufficient, it is often going
to be helpful. The important first-order questions are how much effort was
expended by capable people in checking and testing what you built — and
whether they tell you everything they find. The prudent thing to do here is
to have a generous bug-bounty program. And there’s a second-order question
of growing importance: if your business depends on Linux, shouldn’t some of
your engineers be engaged in its developer community, so you know what’s
going on?

28.3.4 Process assurance

In recent years less emphasis has come to be placed on assurance measures
focused on the product, such as testing, and more on process measures such
as who developed it and how. As anyone who’s done system development
knows, some programmers produce code with an order of magnitude fewer
bugs than others. There are also some organizations that produce much better
code than others. Capable firms try to hire good people, while good people
prefer to work for firms that value them and that hire kindred spirits.

While some of the differences between high-quality and low-quality devel-
opers are down to talent, many are conditioned by work culture. In my own
experience, some IT departments are slow and bureaucratic while others are
lively. Leadership matters; just as replacing Boeing’s engineering leadership
with money men contributed to the 737Max disaster, I've seen an IT depart-
ment’s morale collapse when its CIO was replaced by a bureaucrat. Another
problem is that engineer quality has a tendency to decline over time. One fac-
tor is glamour: a lot of bright graduates want to work for startups rather than
the big tech firms, or for racy fintechs and hedge funds rather than boring old
money-centre banks. Another is demographics: the Microsoft of the early 1990s
was full of young engineers working long hours, but a decade later many had
cashed their stock options and left, while the rest had mostly acquired families
and worked office hours. Once a company stops growing, promotion is slow;
there was a saying in IBM that ‘“The only people who ever left were the good
ones!l” Banks and government agencies have similar problems. Some firms
have tried to counter this by rating systems that require managers to fire the
least productive 10% or so of their team each year, but the damage this does

1 As a former IBM employee, 1 liked that one!

28.3 Metrics and dynamics of dependability 1043

to morale is dreadful; people spend their time sucking up rather than writing
code. Maintaining a productive work culture is one of the really hard problems
and a surprising number of big-name firms are really bad at it. The capability
maturity model, which we discussed in section 27.5.3, is one of the tools that
can help good managers keep good teams together and improve them over
time. But on its own it’s not enough. The whole corporate environment mat-
ters, from the water-cooler chat to the top leadership. Is the mission to do great
engineering, or just to make money for Wall Street? Of course every firm pre-
tends to have a mission, but most are bogus and the staff see through them
instantly.

Some old-fashioned companies swear by the ISO 9001 standard, which
requires them to document their processes for design, development, testing,
documentation, audit and management control generally. For more detail,
see [1941]; a whole industry of consultants and auditors has got its snouts in
this trough. Like ISO 27001 which we discussed in section 28.2.9 above, it’'s
decorative rather than effective. At best it can provide a framework for incre-
mental process improvement; but very often it’s an exercise in box-ticking that
merely replaces chaos by more bureaucratic chaos. Just as agile development
methodologies displaced waterfall approaches, so ISO 9001 is being displaced
by the capability maturity model. What that comes down to, in assurance
terms, is trusted suppliers.

But trusted suppliers are hard to certify. Government certifiers cannot be seen
to discriminate, so a program degenerates into box-ticking. Private certification
schemes have a tendency to reinforce cartels, or to race to the bottom, as we
discussed above in section 28.2.8. In both cases the consultancies and audit
firms industrialise the process to maximise their fee income, and we get back
to where we started. If you are good at your job, how do you get that across?
Small businesses who do high-quality work generally do better when they sell
to the most discriminating customers — to the few big players who're smart
enough to appreciate what they do. In short, you usually have to be an expert
yourself to really understand who the quality providers are.

So what about the dynamics? If quality is hard to measure, and the incentives
for quality are mixed, and improving quality is hard, then what can usefully
be said about the assurance level of evolving products? Will they be like milk,
or like wine [1490]? Will they get better with age, or go off?

The simple answer is that you have to do real measurements. The quality
of a system may improve, or decline. It may even find an equilibrium if
the rate at which new bugs are introduced by product enhancements equals
the rate at which old bugs are found and removed. There are several research
communities measuring reliability, availability and maintainability of systems
in various applications and contexts. Empirically, the reliability of new systems
often improves for a while as the more energetic bugs are found and fixed,
then stays in equilibrium for a number of years, and then deteriorates as the

1044 Chapter 28 = Assurance and Sustainability

code gets complex and more difficult to maintain (which software engineers
sometimes even refer to as senescence). However, if the firms that maintain
the code are still making enough money from it, and are incentivised to care
about quality, they can fix this by rewriting the parts that have become too
messy — a process known as refactoring. In short, the real world is complicated.
Models can take you only so far, and you have to study how a system behaves
in actual use.

Measurement brings its own problems. Some vendors collect and analyse
masses of data about how their products fail - examples being platform compa-
nies like Microsoft, Google and Apple —but make only selected data available
to outsiders, creating a market for specialist third-party evaluators, from the
tech press to academics. Other firms say much less, creating an opportunity for
rating firms such as Bitsight. The healthcare sector is notoriously cagey about
evidence of harm to patients, whose lawyers may have to work for years to
build a negligence case. But in applications such as medical devices, there is
enough of a public interest for regulators to intervene to increase transparency,
and as we noted in section 28.2.3 above, the EU recently changed the law on
medical device regulation to compel aftermarket surveillance. As most soft-
ware nowadays is in applications rather than platforms, and very often in or
supporting devices, this brings us to consider the regulation of safety.

28.4 The entanglement of safety and security

Aswe discussed in 28.2.2 governments regulate safety for many types of device
from cars to railway signals and from medical devices to toys. As software finds
its way into everything and everything gets connected to cloud services, the
nature of safety regulation is changing, from simple pre-market safety testing
to maintaining security and safety over a service lifetime of years during which
software will be patched regularly. We've already seen how this is becom-
ing entangled with security. We discussed smart grids in section 23.8.1, smart
meters in section 14.2 and building alarms in section 13.3.

I believe that the increasing entanglement of safety and security is so signifi-
cant for our field that since 2017 we’ve merged teaching on safety and security
for our first-year undergraduates, as I mentioned in section 27.1. Safety is a
much more diverse subject than security. While security engineering is a fairly
coherent discipline, safety engineering has fragmented over time into separate
disciplines for aircraft, road vehicles, ships, medical devices, railway signals
and other applications. We can still learn a lot from safety engineers, as I dis-
cussed in section 27.3, and safety engineers are starting to have to learn about
security too. This will be a long process. Thanks to the coronavirus lockdown,
these lectures are now publicly available on video [90]; I now wish I'd put my
lectures online years ago.

28.4 The entanglement of safety and security 1045

What spurred us to unite security and safety teaching was some work we
did for the European Union in 2015-6 looking at what will happen to safety
regulation once computers are embedded invisibly everywhere. The EU is the
leading safety regulator worldwide for dozens of industries, as it’s the largest
market and cares more about safety than the US government does. Officials
wanted to know how this ecosystem would have to adapt to the ‘Internet of
Things” where vulnerabilities (wWhether old or new) may be remotely exploited,
and at scale. Many regulators who previously thought only in terms of safety
will have to start thinking of security as well.

The problem facing the EU in 2015 was how to modernise safety regulation
across dozens of industries from cars and planes to medical devices, railway
signals and toys, and to introduce security regulation as appropriate. The regu-
latory goals are different. In this book, we have discussed how security failsin a
number of different sectors and the nature of the underlying market failure. In
different contexts, security regulators might want to drive up attackers’ costs
and reduce their income; to reduce the cost of defence; to reduce the impact of
security failure; to enable insurers to price cyber-risks efficiently; and to reduce
both the social cost of attacks and social vulnerability to them.

Safety regulators seem to be more straightforward. They tend to ignore the
economic subtleties underlying each market failure and focus on injury and
death, then on direct property damage. For deaths, at least, you’'d think we
have decent statistics, but priorities are modulated by public concern about dif-
ferent types of harm. As we’ve discussed, the public are much more alarmed
at a hundred people dying all at once in a plane crash than a thousand peo-
ple dying one at a time in medical device accidents. However, when hack-
ers showed they could go in over wifi and change the dose delivered by sev-
eral models of Hospira Symbiq infusion pump to a potentially fatal level, the
FDA issued a safety advisory telling hospitals to stop using it [2069]. It did
not issue advisories about the 3004+ models that merely suffered from the safety
issues we discussed in section 28.2.3. When you stop to think about it, that’s
rather striking. A safety regulator ignores a problem that kills several thousand
Americans a year while panicking at a safety-plus-security issue that has so far
killed nobody. Perhaps people intuitively grasp the principle we discussed in
section 27.3.6: that a one-in-a-million chance of a fatal accident happening by
chance doesn’t give much assurance if an opponent can engineer the combina-
tion of inputs needed to trigger it.

The pattern continued the following year, when the FDA recalled 465,000 St
Jude pacemakers in the USA for a firmware update after a report that the device
could be hacked. The update involves a hospital visit because of a small risk
of device failure. The report itself was controversial, as it was promoted by an
investment firm that had shorted St Jude’s stock [1842].

The EU already had work in progress on medical device safety and, the fol-
lowing year, updated its Medical Device Directives to require that medical

1046 Chapter 28 = Assurance and Sustainability

device software be developed ‘in accordance with the state of the art taking into
account the principles of development life cycle, risk management, including
information security, verification and validation’, and ‘designed and manufac-
tured in such a way as to protect, as far as possible, against unauthorised access
that could hamper the device from functioning as intended” [652]. This text
doesn’t cover all the bases but is a useful first step; it comes into force in 2021.

28.4.1 The electronic safety and security of cars

Road safety helped drive interest in the convergence of security and safety in
the mid-2010s, thanks to the surge of interest in self-driving cars driven by
Google and Tesla, among others. Following the breakthrough in computer
vision using deep neural networks in 2012, there was rapid progress. The first
news of early accidents with experimental vehicles arrived around 2015 at
the same time as the breakthrough research on adversarial machine learning
I described in section 25.3 and the high-profile hack of the Jeep Cherokee,
which I described in section 25.2.4. Autonomous cars suddenly became a hot
topic, not just for stock-market investors and security researchers, but for
safety. Could terrorists hack them and drive them into crowds? Could they
get the same result by projecting deceptive images on a building? And if kids
could use their phone to hail a car home from school, could someone hack it
to abduct them? And what about the ethics — if a self-driving car was about to
crash and could choose between killing its one occupant or two pedestrians,
what would it do? What should it do? Let’s take the safety and assurance
aspects one step at a time.

Road safety is a major success story for safety regulation. Following Ralph
Nader’s book ‘Unsafe at any speed’ [1372], the US Congress created the National
Highway Traffic Safety Administration (NHTSA). It started from a belief that
crash testing of new models would be enough, but found it needed to force
the recall of vehicles that were discovered later to be unsafe!?. The effects can
be seen starkly in a Consumer Reports video of a crash test between a 2009
Chevy Malibu and a 1959 Chevy Bel Air. The Bel Air’s passenger compartment
is crushed and the dummy driver impaled on the steering wheel; a human
driver would have been killed. Thanks to 50 years of progress, the passenger
compartment of the Malibu remains intact; the front crumple zone absorbs
much of the energy, the seatbelt and airbag hold the dummy driver, and
a human driver would have walked away [472]. I show this video to my
first-year students to emphasise that safety engineering is not just about mak-
ing mistakes less likely, but also about mitigating their effects. The decades of
progress that the video illustrates involved not just engineering, lobbying and

12The story is told in ‘The Struggle for Auto Safety’ [1237].

28.4 The entanglement of safety and security 1047

standard setting across multiple countries, but many tussles between safety
campaigners and the industry. Within the industry, some carmakers tried to
lead while others dragged their heels. Car safety also involves driver training,
laws against drink driving and excessive driver working hours, changing
social norms around such behaviour, steady improvements to road junction
design and much else. It has grown into a large and complex ecosystem. This
now has to evolve as cars become smarter and more connected.

During the 2010s, cars were steadily acquiring more assistive technology,
from parking assist through adaptive cruise control to automatic emergency
braking and automatic lane keeping. I described in section 25.2 how com-
panies like Google and Tesla drove a research program to join these systems
up together, giving autonomous driving. The assistive technology features
themselves had various bugs; I discussed the blind spots of adaptive cruise
control in section 23.4.1. Some were also open to exploitation: Charlie Miller
and Chris Valasek had hacked the Jeep’s park-assist feature to drive it off the
road. Companies that sold limited autonomous driving features, such as Tesla,
experienced accidents that began to undermine public confidence. I discussed
some of the security implications of autonomous vehicles in section 25.2. We
discussed the usability aspects of safety too. Tesla’s ‘Autopilot” required the
driver to pay attention and keep a hand on the steering wheel, in order to
remain in control and avoid accidents. But as it drove adequately much of the
time, many drivers didn’t, with consequences that were occasionally both fatal
and newsworthy. Even in 2020, while the better autopilot systems can drive a
car passably well on the motorway, they can be flaky on smaller roads, getting
confused at round abouts and running over grass verges. So how should we
test their safety?

Testing an anti-lock braking system (ABS) is fairly straightforward as we under-
stand the physics of skidding and aquaplaning, and such systems have been
around long enough for us to have a long accident history. We next had emer-
gency brake assist (EBA), which applies full braking force if it thinks you're
trying to do an emergency stop. The usual algorithm is that if you move your
foot from the accelerator to the brake in under 300ms and then apply at least
2kg of force, it activates and stops the car as quickly as possible. This is a sim-
ple algorithm but is harder to evaluate, as it’s trying to infer the driver’s intent.
(I once triggered mine unintentionally and thankfully there wasn’t a car close
behind me.)

A recent addition is automatic emergency braking (AEB), which is supposed
to stop the car if a child or a dog runs in front of you. This is harder still, as
you're trying to understand everything you see on the street ahead, with com-
plex processing that uses both traditional logic and machine-vision systems
based on deep neural networks. As we discussed in section 25.2, the current
products are both limited and of variable quality. Add lane keeping assist and
adaptive cruise control, and your car can pretty well drive itself on the freeway.

1048 Chapter 28 = Assurance and Sustainability

But how should you test that? And if we ever move to full autonomy, your risk
and threat analysis must include a lot of the bad things that happen in human
societies.

Tesla says in defence of its Autopilot feature that its cars are safer than oth-
ers; of the 135 fatalities in crashes involving its vehicles up to June 23 2020,
only 10 were attributed to Autopilot [1873]. The actual figures are controversial,
though. An insurance forensics company brought a lawsuit against NHTSA to
get the raw figures for accidents up till June 2016, studied them, and claimed
that the analysis offered by Tesla and accepted by NHTSA had considered only
13% of the data. Rather than a 40% decrease in airbag deployments after the
Autosteer feature of the vehicle was activated, as Tesla had claimed, the full
data showed a 57% increase from 0.76 deployments per million miles of travel
to 1.21 [1568].

The insurance industry accumulates good data over time across all car mak-
ers and worries about the cost of claims. It was concerned at AEB, worrying
that if cars brake hard when a rabbit runs in front of them, there might be more
rear-end collisions. But once the data started to arrive in 2016, insurers relaxed.
When I check online how much it would cost me to insure a Tesla with Autopi-
lot versus a plug-in hybrid Mercedes of similar value, I get about the same
answer (though more insurers bid for the Mercedes).

But actuarial costs are not the only driver of public policy. Politicians started
to worry about truck drivers’ jobs. Philosophers started to worry about ethics:
given a choice between killing a pedestrian and the driver, would an autopilot
protect its driver? The industry worried about updates. Progress in machine
vision is so rapid that you can imagine having to sell a whole new vision unit
every five years, as the systems we have now won’t run on the hardware of
five years ago. Would the customers stand for having to pay several thousand
Euros every few years for a new autopilot?

People also worry more about security threats, as we have evolved to be
sensitive to adversarial activity. By 2020, we have a flurry of security stan-
dardisation, including the draft ISO 21434 standard on cybersecurity, which
I mentioned in section 27.3.5; proposed amendments to the regulations of the
UNECE?™ to deal with cybersecurity and software updates for connected vehi-
cles [1925]; and in Japan, following cyber attacks on Toyota and Honda, base-
line requirements for the whole car industry supply chain [1245]. That’s all
great, but the target is moving faster all the time.

In Brussels, officials started to worry about how the regulatory ecosystem
could cope. Over 20 agencies are involved one way or another in vehicle safety
(unlike in the USA, where NHTSA covers everything from car design to speed

13The UN Economic Commission for Europe was established by a 1958 treaty. It includes the
car-making countries in Europe and Africa plus Japan, Korea and Australasia and is effectively
one of three standardisation zones for cars, the others being the Americas and China.

28.4 The entanglement of safety and security 1049

limits). Would each agency have to hire a security engineer? Some of them
don’t have any engineers at all, just lawyers and economists. How should the
ecosystem evolve to cope? Officials were suddenly less willing to trust the
industry’s assurances after the Dieselgate emissions scandal in 2015, when it
turned out that Volkswagen had installed software in its cars to cheat on emis-
sions tests. The Volkswagen and Audi CEOs lost their jobs and face criminal
charges, along with about a dozen other executives; the companies paid bil-
lions in legal settlements. The threat model was no longer just the external
hacker, but included the vendors themselves. Regulators wanted to get back
in control. What did they need to do?

28.4.2 Modernising safety and security regulation

Our brief was to consider the policy problem generally across all sectors. It
was clear that European institutions needed cybersecurity expertise to sup-
port safety, privacy, consumer protection and competition. But what would
this mean in practice? In order to flesh this out, Eireann Leverett, Richard Clay-
ton and I studied three industries of which we had some knowledge: medical
devices, cars and electricity distribution. Our full report [158] was presented in
2016 and published the following year, along with a summary version for aca-
demic audiences [1150]. The full report has an extensive analysis of the existing
patchwork of safety/security standards for embedded devices from ISO, IEC,
NIST and others.

This exercise taught us a huge amount about subjects we didn’t expect would
be on the agenda. Usability is critical in a number of ways. The dominant safety
paradigm used to be to analyse how limited or erratic human performance
could degrade an otherwise well-designed system, and then work out how to
mitigate the consequences. Some countries demand that drivers over 67 get a
medical or re-sit their driving test, as well as insisting on seat belts and airbags.
In security, malice comes into the equation: you worry about the widow in her
eighties who's called up and persuaded to install an “‘upgrade” on her PC. Car
security is not just about whether a terrorist can take over your car remotely
and drive it into some pedestrians. If a child can use her mobile phone to direct
a car to take her to school, what new threats do we have to worry about? Might
she be abducted, whether by a stranger or (more likely) in a custody dispute?
And whose engineers need to worry about her safety — the car company’s, the
ride-hailing company’s, or the government’s?

The security engineer’s task is to enable even vulnerable users to enjoy
reasonable protection against a capable motivated opponent. How do you
embed good practice in industries that have never had to think of distant
adversaries before? That’s not just a matter of setting minimum standards
but also of embedding security thinking into standards bodies, regulatory

1050 Chapter 28 = Assurance and Sustainability

agencies, testing facilities and many other places in the ecosystem. That will
be a long and arduous process, just as car safety was. Getting test engineers
who work by checking carefully whether the ‘British standard finger” can be
accidentally poked into an electrical appliance to think in terms of creative
malice instead will be hard. Where do we start?

We came up with a number of recommendations. Some were considered
by the Commission to be in the “too hard’ category, including extending
product liability law to services, and requiring the reporting of breaches and
vulnerabilities not just to security agencies and privacy regulators but to other
stakeholders too. Eventually we’ll need laws regulating the use of car data in
investigating accidents, particularly if there are disputes over liability when
car autopilots cause fatal crashes. (At present the vendors hold the data close
and it takes vigorous litigation to get hold of it.) Without data we won’t be
able to build a learning system.

One of our recommendations was that vendors should have to self-certify,
for their CE mark, that products can be patched if need be. This looks set to be
partly achieved by means of a technical standard, ETSI EN 303 645 V2.1 [646],
as I discussed in section 28.2.9 above. ETSI is a membership organisation of
some 800 firms; it can move more quickly than governments but still has some
clout; for example, it set up the standards bodies for mobile telephony. Failure
to comply with an ETSI standard does not however empower a customs officer
in Rotterdam to send a container of toys back to China. For that, we need to
endow standards with the force of law.

28.4.3 The Cybersecurity Act 2019

Another recommendation was that Europe should create a European Security
Engineering Agency to support policymakers. Europe already had the Euro-
pean Network and Information Security Agency (ENISA), which coordinated
security breach reporting among EU government agencies. However, it had
been exiled to Crete as a result of lobbying by the UK and French intelligence
agencies, who did not want a peer competitor among the European institu-
tions. The Brexit vote shifted the politics and made it feasible for ENISA to
open a proper Brussels office so it could take on the security engineering advi-
sory role.

The Cybersecurity Act 2019 formalised this [654]. It empowered ENISA
to be the central agency for regulating security standards, as we described
in section 28.2.9, and also to be the main agency for cybersecurity advice to
other European bodies. It is to be hoped that ENISA will build its competence
and clout over time, and see to it that new safety standards pay appropriate
attention to security too, including at a minimum an appropriate development
lifecycle (which was another of our recommendations).

28.5 Sustainability 1051

For a security technology to really work, functionality isn’t enough, and the
same goes for testing and even incentives for learning. The right people have to
trust it and it has to become embedded in social and organisational processes,
which means alignment with wider systems and stable persistence over a long
enough period of time. The implication is that regulators should shift from
the testing of products to the assurance of whole systems (this was our final
recommendation).

28.5 Sustainability

The problem our report identified as the most serious in the long term was that
products are becoming much less static. As security and safety vulnerabilities
are patched, regulators will have to deal with a moving target. Automobile
mechanisms will need security testing as well as safety testing, and also means
of dealing with updates. As we saw from the Volkswagen debacle, many legacy
manufacturers haven’t caught up with coordinated disclosure.

Most two-year old phones don’t get patched because the OEM and the mobile
network operator can’t get their act together. So how on earth are we going to
patch a 25-year-old Land Rover that spent 10 years in the Danish countryside
and was then exported to Romania? This kicked off a political fight, as the car
industry did not want to be liable for software patching for more than six years.
(The typical European car dealer will sell you a 3-year lease on a new car if
you're rich, and on an approved used car if you're not quite so rich.) However,
the embedded carbon cost of a new car — the amount of CO, emitted during
its manufacture — is about equal to its lifetime fuel burn. And it’s predictable
that, sooner or later, a car whose software isn’t up-to-date won’t be allowed on
the roads. At present, the average age of a car at scrappage is about 15 years;
if that were reduced to six, the environmental cost would be unacceptable. We
would not even save CO, by moving from internal combustion engines to elec-
tric vehicles, because of the higher embedded carbon cost of electric vehicles;
the whole energy transition is based on the assumption that they will last at
least as long as the 150,000km average of our legacy fleet [614].

We found a very ready audience in European institutions. A number of
other stakeholders had been complaining about the effects of software on the
durability of consumer goods, with updates available only for a short period
of time or not at all. Right-to-repair activists were campaigning for consumer
electronic devices to be reusable in a circular economy, annoyed that tech firms
try to prevent repair using ‘security’ mechanisms, or even abuse them in an
attempt to make repair illegal. The self-regulation of the IoT market has been
largely unsuccessful, thanks to a complex interplay of economic incentives
and consumer expectations [1958]. Consumer-rights organisations were
starting to warn of the shockingly short lifespan of smart devices: you could

1052 Chapter 28 = Assurance and Sustainability

spend extra on a ‘smart fridge” only to find that it turned into a frosty brick
a year later when the vendor stopped maintaining the server [935]. Planned
obsolescence was already a hot political topic as green parties increased their
vote share across Europe. Lightbulbs used to last longer; the bicentennial light
has been burning at Livermore since 1901. In 1924 a cartel of GE, Osram and
Philips agreed to reduce average bulb lifetimes from 2500h to 1000h, and this
behaviour has been followed by many industries since. Governments have
pushed back; France made it illegal to shorten product life in 2015, and after
Apple admitted in 2017 that it had used a software update to slow down older
iPhones, prompting users to buy newer ones, it was prosecuted. In 2020 it
received the highest-ever fine, €1.2B, for anti-competitive practices, although
this also related to its treatment of its French distributors [1195]. (It settled a
US class action for $500m [968].)

Security agencies were already warning us about the risks of the ‘Internet
of Things’, including network-connected devices with default passwords and
unpatchable software. In fact, Ilearned of the Mirai botnet taking down Twitter
as I was on the Eurostar train back to London from giving the first presenta-
tion of our work, to an audience of about 100 security and IT policy people in
Brussels. We soon found out that it exploited Xiaomi CCTV cameras that had
default passwords and whose software could not be patched. It was a perfect
illustration of the need for action.

Over the ensuing three years there was more than one initiative to try to cre-
ate a legal means to push back on tech companies that failed like Xiaomi to
support their products by patching vulnerabilities (or even making patching
possible). The tech lobbyists blocked the first couple of attempts, but eventu-
ally in 2019 the European Parliament updated consumer law to cover software
maintenance.

28.5.1 The Sales of goods directive

This Directive passed the European Parliament in May 2019 [655] and will take
effect from 2021. Thereafter, firms selling goods ‘with digital elements” must
maintain those elements for a reasonable service life. The wording is designed
to cover software in the goods themselves, online services to which the goods
are connected, and apps that may communicate with the goods either via the
services or directly. They must be maintained for a minimum of two years after
sale, and for a longer period if that is a reasonable expectation of the customer.
What might that mean in practice?

Existing regulations require vendors of durables such as cars and washing
machines to keep supplying spares for at least ten years, so we can hope that
the new regulatory regime will require at least as long. Indeed, the preamble to
the Directive notes that “A consumer would normally expect to receive updates

28.5 Sustainability 1053

for at least as long as the period during which the seller is liable for a lack of
conformity, while in some cases the consumer’s reasonable expectation could
extend beyond that period, as might be the case particularly with regard to
security updates.” Given that in many countries cars have to pass an annual
roadworthiness test to remain in use, and that such a test is likely to include a
check that software is patched up to date in the foreseeable future, we could
well see a requirement for security patches to extend beyond ten years.

No doubt there will be all sorts of arguments as the lobbyists try to cut the
costs of this, but it’s a huge step in the right direction. American practice often
follows Europe on safety matters.

28.5.2 New research directions

Now that there is not just a clear social need for long-term maintenance of the
safety and security of software in durable goods, but a clear legal mandate,
I urge my fellow computer scientists to adopt this as a grand challenge for
research.

Since the 1960s we have come to see computers almost as consumables,
thanks to Moore’s law. This has conditioned our thinking from the lowest
level of technical detail up to the highest levels of policy. We've crammed
thousands, and then millions, more transistors into chips to support more
elaborate pipelining and caching. We've put up with slow and inefficient
software in the knowledge that next year’s PC will run it faster. We've
shrugged off monopolies, believing that the tech ten years from now will be
quite different from today’s, so we can replace competition in the market with
competition for the market. We’ve been like a cruise ship, happily throwing
the trash overboard in the expectation that we’ll leave it far behind us.

Moore’s law is now running out of steam. The analysis of CPU performance
by Hennessy and Paterson shows that while this grew by 25% per annum
from 1978 to 1986 and a whopping 52% from 1986 to 2003, it slowed to 23%
in 2003-11, 12% in 2013-15 and 3.5% after that [884]. As the party winds down,
we’ll have to start clearing up the trash. That extends from the side-channel
attacks like Spectre that were caused by the 12-stage CPU pipelines, through
the technical debt accumulated in our bloatware, right up to the monopolistic
business ecosystem that drives it all.

There is much, much more. The root certificates of a number of popular CAs
are starting to expire, and if these are embedded in devices such as TVs whose
software can’t be upgraded, then the devices are essentially bricked [118].
(The most popular, Letsencrypt, rolls over in 2021.) When CA root certs expire
you have to update clients, not servers, to fix them. In consumer devices, the
trend is towards shorter lifetimes, to make crypto updateable; as I discussed
in section 21.6, browsers such as Safari and Chrome are starting to enforce

1054 Chapter 28 = Assurance and Sustainability

398-day certificate expiry, and that’s another strong incentive for frequent
updates.

There are many environments with long-lived equipment where updates
aren’t usual, from petrochemical plants to electricity substations. Systems
in buildings and civil engineering projects are somewhat of a hybrid; some
vendors are working on versions of Linux that are expected to be as stable
as possible and maintained for 25 years, while others are pushing for more
aggressive regular updating of whole systems and telling us to “put everything
in the cloud’. This latter approach is associated with the ‘smart buildings’
meme, but has its own drawbacks. Once multiple contractors and subcontrac-
tors need online access to systems that contain full engineering information
on buildings — from the electricity substations through the air-conditioning to
the fire and burglar alarms — there are obvious risks. Some of these contractors
operate at international scale, so a subverted employee or rooted machine
there may have access to the critical national infrastructure of dozens of
countries. Are we comfortable with that?

Adapting to the new normal will take years, as it will require behaviour
change by millions of stakeholders. I suspect that the tensions created by this
adaption will become significant in policy, entrepreneurship and research over
the next decade.

So what might sustainable security research look like? As a first pilot project,
Laurent Simon, David Chisnall and I tackled the maintenance of cryptography
software. As I mentioned in section 19.4.1, TLS was proven secure twenty years
ago, but there’s been about one attack a year on it since, mostly via side chan-
nels. One of the problems is that the crypto implementation, such as OpenSSL,
typically has code designed to perform cryptographic operations in constant
time, so that the key in use won’t leak to an outside observer, and also to zeroise
memory locations containing key material or other sensitive data, so that the
key can’t be deduced by other users of the same machine either. But every so
often, somebody improves a compiler so that it now understands that certain
instructions don’t do any real work. It optimises them away, and all of a sudden
millions of machines have insecure crypto software. This is extremely annoy-
ing; you're out there fighting the bad guys and all of a sudden your compiler
writer stabs you in the back, like a subversive fifth column in your rear. Our
toolsmiths should be our allies rather than our enemies, and so we worked
out what would be needed to fix this properly. Languages like C have no way
of expressing programmer intent, so we figured out how to do this by means
of code annotations. Getting a compiler to do constant-time code and secure
object deletion properly turns out to be surprisingly tricky, but we eventually
got a working proof of concept in the form of plugins for LLVM [1762].

Much, much more will be needed. Moving from the low level of compiler
internals to the medium level of safety systems, a big challenge facing the car
industry is getting accident data to the stakeholders who can learn from it.

28.5 Sustainability 1055

In Europe, some fifty thousand people die in road traffic accidents each year,
and another half a million are injured. Worldwide, there are something like a
million deaths a year. As cars are starting to log both control inputs and sen-
sor data, there are many megabytes of data about a typical accident, but at
present these are mostly not analysed. Increasingly, the data are on the vendors’
servers as well as in the damaged vehicles. But when the police investigate
major road accidents, they do not at present have access to much information
from data recorders or to most of the 100-million-plus lines of software in the
vehicle — some of which will be from subsidiary suppliers, and of uncertain
provenance, version and patch status. Where there is a closely-fought lawsuit,
data may be demanded, but vendors are reluctant to share it and it typically
takes a court order.

What should happen? We should aim at a learning system. We keep hear-
ing reports of people getting killed by an autonomous car in a stupid acci-
dent — as when an Uber killed Elaine Herzberg in Tempe, Arizona, because
she was pushing a bike on the road and its software detected pedestrians only
on or near a crosswalk [1266]. We should expect to be able to push an update
to stop that happening again. So what would the patch cycle look like? In
aviation, accidents are monitored resulting in feedback not just to operators
such as pilots and air traffic controllers but to the designers of aircraft and
supporting ground systems. Work is starting on systems for monitoring acci-
dents involving medical devices, though the vendors may well drag their feet.
There, too, the key is mandatory systems for monitoring adverse events and
collecting data. At present, we fix road junctions once there have been several
accidents there; that’s all the “patch cycle” we have at present, because the only
data available to the highways department is the location and severity of each
accident, plus perhaps a couple of sentences in the report from the attending
officer. A learning system for cars too is inevitable as vehicles become more
autonomous, but they won’t learn on their own.

Learning will involve analysing the causes of failures, accumulating engi-
neering knowledge, and ultimately politics involving multiple stakeholder
groups. For starters, we'll need the fine-grained data from what the cars
sensed, what they decided to do, and why. The task of writing the laws to get
these data from vendors to accident investigators, insurance assessors and
other stakeholders lies ahead. At present, EU Member States are responsible
for post-market surveillance of vehicle standards, so very little gets done, and
there have been proposals to give the European Commission a surveillance
power in the wake of Dieselgate. Then there will be the task of actually
building these systems. They will be large and complex, because of the need
to deal with multiple conflicting rights around safety, privacy and jurisdiction.

Moving still further up the stack to the level of policy, there’s a growing con-
sensus that tech needs to be better regulated. We could perhaps tolerate the
various harms to privacy and competition while the technology was changing

1056 Chapter 28 = Assurance and Sustainability

rapidly. If you didn’t like the IBM monopoly in the 1980s you just had to wait
until Microsoft came along; and by the time Microsoft had become the ‘evil
empire’ in the late 1990s, Larry and Sergey were starting Google. Was Google+
too clunky for you? No matter, try Facebook or Twitter. But as Moore’s law
runs out of steam, the dominant firms we have now may remain dominant for
some time — just like the railways dominated the second half of the nineteenth
century and the first third of the twentieth. And there are many other sectors
where technology has enabled some players to lock in market dominance; as
I write in 2020, Amazon is the world’s most valuable company. We need to
refresh our thinking on antitrust law. There are some signs that this is happen-
ing [1046]. What would you hope the law to look like twenty years from now?
How should the safety, security and antitrust pieces fit together?

28.6 Summary

In the old days, the big question in a security engineering project was how
you know when you're done. All sorts of evaluation and assurance method-
ologies were devised to help. Now the world is different. We're never done,
and nobody who says they are done should be trusted.

Security evaluation and assurance schemes grew up in a number of different
ecosystems. The US military spawned the original Orange Book, and inspired
both the FIPS 140 standards for cryptographic modules and the Common
Criteria, both of which attempted to spread the gospel of trustworthy systems
to businesses and to other countries. Safety certification schemes evolved
separately in a number of industries — healthcare, aerospace and road vehicles
to name just three. Vendors game these systems all the time, and work to
capture the regulators where this is possible. Now that everything’s acquiring
connectivity, you can’t have safety without security, and these ecosystems are
merging.

In both safety and security, the emphasis will move from pre-market testing
to monitoring and response, which will include updating both devices already
in the field and the services that support them. This will move beyond soft-
ware lifecycle standards towards the goal of a learning system that can recover
quickly even from novel hazards and attacks.

Things are improving, slowly. Back in the 20th century, many vendors never
got information security right. By 2010, the better ones were getting it more or
less right at the third or fourth attempt. In the future, everyone will be expected
to fix their products reasonably promptly when they break, and to do so for a
reasonable period of time.

Research problems 1057

But the cost of all this, the entanglement of security with safety in all sorts
of devices and services, and their interaction with issues from discrimination
to globalisation and trade conflict, will make these issues increasingly the stuff
of global politics. The safety and security costs inflicted on us by tech, in its
broadest sense, will be in increasing tension with national ideas of sovereignty
and, at a more practical level, people’s ability to achieve by collective action
those goals that cannot be achieved through individual action or market forces.
Just as security economics was a hot topic in the 2000s and security psychology
in the 2010s, I expect that the politics of security will be a growth topic in the
2020s and beyond.

Research problems

In addition to the grand challenge of sustainable security I discuss in
section 28.5.2 above, there are many other open problems around assurance.
We really don’t know how to do assurance in complex ecosystems such as
where cars talk to online services and mobile phone apps. A second bundle
of problems comes from the fact that as the worlds of safety and security are
slowly coming together, like a couple of galaxies slowly merging, we find that
safety engineers and security engineers don’t speak each others” languages,
have incompatible sets of standards and even incompatible approaches to
standardisation. Working this out in one industry after another will take years.

Another big opportunity may be for lightweight mechanisms to improve real
deployed systems. Too many researchers take the view that ‘If it's not perfect,
it’s no good.” We have large communities of academics writing papers about
provable security, formal methods and about obscure attacks that aren’t found
in the wild because they don’t scale. We have large numbers of real problems
arising from companies corner-cutting on development. If programmers are
going to steal as much code as they can from stackexchange, do we need a
public-interest effort to clean up the examples there to get rid of the buffer
overflows? And do we have any chance of setting security usability standards
for tools such as crypto libraries and device permissions, so that (for example)
libraries that default to ECB would be forcibly retired, just like MD5 and SHA1?

Yet another is likely to be the testing of AI/ML systems, both before deploy-
ment and for continuous assessment. We already know, for example, that deep
neural networks and other ML mechanisms inhale prejudice along with their
training data; because machine-vision systems are mostly trained on photos of
white people, they are uniformly worse at spotting people with darker skin,
leading to the concern that autonomous vehicles could be more likely to kill

1058 Chapter 28 = Assurance and Sustainability

black pedestrians [2030]. What will a learning system look like when it touches
a contentious social issue? How do you do continuous safety in a world where
not all lives are valued equally? How do we ensure that the security, privacy
and safety engineering decisions that firms take are open to public scrutiny and
legal challenge?

Further reading

There’s a whole industry devoted to promoting the security and safety assur-
ance business, supported by mountains of your tax dollars. Their enthusiasm
can even have the flavour of religion. Unfortunately, there are nowhere near
enough people writing heresy.

